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Abstract. Recently, the economic crisis has increased uncertainty degree of 

person's investment in financial markets. Therefore, considering uncertainty conditions 

to optimize financial portfolios is very importance. This paper presents a decision 

support model called chance constrained goal attainment programming (CCGAP) to 

optimize multi-objective portfolio decision problem under uncertainty environment. 

CCGAP is a combination of the well known classical approach of chance constrained 

programming (CCP) and A-priori multi-objective approach of goal attainment 

programming (GAP) that is known to be an extension of goal programming (GP). The 

proposed model is illustrated in a real problem of multi-objective portfolio selection by 

Iran stock market, where goal values of stochastic objectives and rate of return of 

securities are considered random and normally distributed in different scenarios. 

Keywords: Stochastic programming, Multi-objective programming, Chance 

constrained goal attainment programming, Portfolio selection.  
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1. Introduction  

The Markowitz covariance model (Markowitz, 1952), the classical and basically 

approach to portfolio optimization, is based on two conflicting optimization objectives: 

the risk and the expected return. The “mean-variance” methodology (Markowitz, 1952) 

for portfolio selection problem has been central to research activity and has served as a 

basis for the development of modern financial theory. Yet, the Markowitz model 

disadvantages include:  
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(i) The Markowitz model was generally criticized as not efficient with axiomatic 

models of preferences for choice under risk (Bell et al., 1988). 

(ii) The Markowitz model was a quadratic model which finally was non-linear. 

Because his model was non-linear, so obtained results were often local optimum.  

(iii) The mean-variance model of Markowitz was the time needed to compute the 

covariance matrix from historical data especially when problems were large scale and 

the difficulty of solving the large scale quadratic programming problems. In the 

literature, some algorithms such as those proposed by Sharpe (1967), Elton et al. 

(1976), Konno (1990), and Young (1998) are generated in order to linearize and 

improve the efficiency calculation of the Markowitz covariance model (Shing and 

Nagasawa, 1999). Serban et al. (2011) presented description of efficient frontier for a 

portfolio made of three assets. The originality of their work was in the combination of 

classification theory and risk estimation theory to determine the best assets. Amiri et 

al. (2011) proposed a nadir compromise programming (NCP) for optimization of 

multi-objective portfolio problem in Iran stock market. Georgescu (2011) presented 

stylized facts displayed by the Bucharest stock exchange BET index and then provided 

an application of GARCH modeling approach to predicting BET index mean-return 

and volatility-return processes. 

In real world, using Markowitz model would not have desired performance when 

parameters are estimated. Because data about events in the past may not be known 

exactly due to errors in measuring or difficulties in sampling, whilst data about events 

in the future may simply not be known with certainty. For example, the expected return 

of a portfolio was used as an approximation because returns are random, and it is

hardly possible that the investor can group a portfolio by attending to all of its possible 

returns (Liu, 1999). In many situations there is a need to make, hopefully an optimal, 

decision under uncertainty.  

Stochastic programming deals with a class of optimization models and algorithms in 

which some of the data may be subject to significant uncertainty. Recently, a few 

authors studied stochastic portfolio selection problems. Several techniques have been 

introduced to solve stochastic programming problems. The most popular technique is 

the chance constrained programming (CCP) developed by Charnes and Cooper (1963). 

The CCP method is a deterministic equivalent formulation of a stochastic problem 

(Charnes and Cooper, 1963). This technique allows the uncertainty related to several 

parameters of the problem such as the constraints coefficients, the objectives 

coefficients and the goals values. The main idea behind the CCP technique it to allow 

the decision-maker to generate the most satisfactory solutions by making compromises 

between the various achievement degrees of the objectives and the risk associated with 

these objectives. In fact, the CCP attempts to maximize the expected value of the 
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objectives while assuring a certain probability of realization of the different constraints 

(Aouni et al., 2005). 

Using multi-objective stochastic models for stochastic portfolio selection problems 

has been considered by many researches and DMs. For example, in model proposed by 

Shing and Nagasawa (1999) the mean and variance of return of securities have several 

scenarios with known probabilities. Muhlemann et al. (1978) developed a multi-

objective stochastic linear programming formulation of portfolio selection problem 

under uncertainty.  

Ballestero (2001) proposed a formulation of stochastic goal programming based on 

utility function and ‘‘Mean-Variance’’ model. Tang et al. (2001) proposed a chance-

constrained problem of portfolio selection to choose a portfolio with minimized 

standard deviation under the condition that the probability that the portfolio's rate of 

return is greater than an expected rate of return is no less than a confidence level. 

Ballestero (2005) minimized portfolio semi variance as the objective function in 

stochastic programming model subject to standard parametric constraints which led to 

the mean-semi variance efficient frontier. Canakoglu and Ozekici (2009) considered 

this problem in a multiple period setting where the investor maximizes the expected 

utility of the terminal wealth in a stochastic market. Xu and Zhang (2012) considered a 

stochastic programming model where the objective function was the variance of a 

random function and the constraint function was the expected value of the random 

function. Tamiz et al. (1996) proposed a two-stage goal programming model for 

portfolio selection. Aouni et al. (2005) explicitly introduced the DM’s preferences and 

adapted CCP for the SGP model. They illustrated their formulation through a portfolio 

selection example where the goal values associated with each objective are considered 

normally distributed.  

The GP model was proposed by Charnes et al. (1955). In the GP there is no clear 

relation between the weights and the solution found as you might end up in new 

vertices in both the solution space, as well as in the utopian set. Hence it seems 

appropriate to use a method that besides having advantages of GP method, can apply 

DM’s ideas in optimization process of stochastic problem.  

The goal attainment programming (GAP) (Gembicki, 1974) is of methods in priori 

category that can be considered as a special kind of the GP method. Compared to the 

GP method, the GAP method has the following advantages:  

(1) The GAP has fewer variables. If a multi-objective problem has K objective 

functions, m constraints and n variables, then compared to GAP method, the GP 

method will has 2K −1 more variables, so that by increasing the dimensions of problem, 

this difference would be understood easier, (2) When dimensions of multi-objective 
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problems are increased, the GAP method has higher speed for optimizing such 

problems. If a linear programming problem has n variables and m constraints, then 

maximum number of needed iterations for optimizing this problem will be equal to 

!/ ! !n

m
C n m n m( ) (Taha, 1976), (3) The GAP method allows optimization of non-

linear multi-objective problems. Gembicki and Haimes (1975) showed that the GAP 

can optimize non-linear multi-objective problems too. This shows capability of 

simultaneous optimization of linear and non-linear multi-objective problems by the 

GAP method, and (4) There is a specific relation between objectives preference 

weights and optimal values of objectives in the GAP method (Andersson, 2000) (see 

Section 2 for more details).  

Therefore our main motive in this paper is to combine CCP approach and GAP 

method and present chance constrained goal attainment programming (CCGAP) 

method which can be used for optimizing multi-objective stochastic problems. Beside 

the GAP method’s advantages, ideas of DM can be used in CCGAP method for 

decision making under uncertainty.  

In order to illustrate the proposed model, we test it by a multi-objective problem of 

portfolio selection from the Iran stock exchange market. In this paper, in addition to 

parameters of rate of return, goal values of stochastic objectives are considered random 

too in stochastic problem of multi-objective portfolio selection. 

The rest of the paper is organized as follows: In Section 2 we introduce the GAP 

method and explain the stochastic programming and the CCP approach. In Section 3, 

we propose a chance constrained goal attainment programming (CCGAP) model, 

which combine the GAP model and the CCP approach. The CCGAP allows DM to 

consider several conflicting objectives with random parameters. In Section 4, a real 

case is given to illustrate the CCGAP model about problem of multi-objective portfolio 

selection. Meanwhile we conclude this paper in Section 5. 

 

2. Portfolio selection problem 

Consider a multi-objective problem of portfolio selection as follows: 
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where fk k = 1,…, K are positive objectives such as liquidity, return, fr r = K+1, …, R 

are negative objectives such as risk, cost and 
=1

,  = 1,...,
n

ij j ij
a x b i m are constraints of 

the problem. The xj is the decision variable of proportion to be invested in the security j 

and the sum of the proportions invested in securities is equal to 1.  

Until now, different methods have been introduced for solving multi-objective 

problems, e.g. Program (1). One of these methods is GAP (Gembicki, 1974) in which, 

a vector of decision making goals g = (g1,…, gt) is associated with a set of objectives  

f = (f1,…, ft). The relative degree of under-or over-achievement of the goals is 

controlled by a vector of preference weights of objectives w = (w1, …, wt). In the case 

that the more of the objective is better, the final model of GAP can be obtained as 

follows: 
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where wk > 0 (for k = 1, …, K) and
1

1.
K

kk
w  The term wky introduces an element of 

surplus into Program (2), which otherwise imposes that the goals be rigidly met. In 

Program (2), gk is goal related to objective k.  

If the case that less of the objective is better, the final model of GAP can be obtained 

as follows: 
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The term wry introduces an element of slackness into Program (3), which otherwise 

imposes that the goals be rigidly met. The weighting vector (w) enables the DM to 

express a measure of the relative trade-offs between the objectives. For instance, 

setting the vector w equal to the initial goals indicates that the same percentage under-

or over-attainment of the goals (g) is achieved. The GAP method provides a 

convenient intuitive interpretation of the programming problem which is solvable 

using standard optimization procedures.  

One of advantages of the GAP method is existence of a specific relation between 

preference weights and optimal values of each objective (Andersson, 2000). See Figure 

1 for better understanding.  

 

f2                                                                                                                                         
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                                     2        

                                                                                       g 

                                                                                               f1 

Figure 1. Representation of relation between wk and *

kf (for k = 1, 2) values in the 

GAP method 
 

 

Figure 1 shows minimization of a two objectives problem in solution space S. The 

dotted region shows the optimal and feasible Pareto frontier of solution space S. In 

order to optimize this problem by the GAP method, the continued vector g shows goal 

values vector of each objective which are specified by DM. Also the vectors (1) and 

(2) show two different vectors of wk values. In vector (1): w1 < w2 and in vector (2):  

w1 > w2. On this basis considering vectors (1) and (2), it can be said f1
* 

<
  

f2
* 

and  

 f1
* 

>
  

f2
*
, respectively. For example, when value of wk decrease, value of f1

*
 will 

decrease too. This property allows DM to select a proper preference weight vector for 

decision making in order to get more desired results in minimum possible time.  
In a real case, DMs do not have exact and complete information on decision 

objectives and constraints. For portfolio-selection problems, the collected data does not 
behave crisply and they are typically uncertain in their nature. Hence stochastic 
problem related to Program (1) can be stated as follows: 
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where 
kj

c ,
rj

c ,
ij

a and 
i

b  are random parameters. In the CCP approach, the Program (4) 

with considering positive objectives is converted into a deterministic equivalent 
program as follows (Prékopa, 1995): 
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where 
=1

n

kj jj
E c x  is the expected value of the objectives with regards to random 

conditions kjc  and αi are threshold values of constraints that are specified by the DM. 

 

3. Chance constrained goal attainment programming 

In this section, we propose our deterministic equivalent program for the Program (4) 

based on CCP approach and GAP method. We call the resulting approach chance 

constrained goal attainment programming (CCGAP). In the following, we present how 

to transform the random objectives and the random constraints. 

 

3.1. Random objectives 

 

kj
c are random and normally distributed parameters. The goal gk can be random 

parameter where the DM does not know its value with certainty. Thus we assume that 
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the goals of stochastic objectives 2,
k kk g g

g N( )where 
kg
and 2

kg
(for k = 1, …,K) 

are known (Aouni et al., 2005). The objective is maximizing 
=1

 for 1,...,( ) 
n

kj jj
c x k K  

and then: 
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kj j kj
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By considering the GAP method, it can be said which the objective is minimizing y  
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where = 0,1z P N z( ) ( )  represents the probability distribution function of a 

standard normal distribution.  
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3.2. Random constraints 

  

Random constraints are handled as in the CCP approach: 
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where 
=1 =1

1
K m

k ik i
w w (wk, wi > 0, for k = 1, …, K and i = 1, …, m). 

The Program (6) allows DM’s ideas about random parameters, conflicting objectives 

and values of threshold be gathered prior to optimization process. In next section, we 

will illustrate our proposed model for a multi-objective stochastic problem about 

optimal portfolio selection in Iran stock market.  
 

4. Case study  
 

 

In this section we will illustrate our developed model through a portfolio selection real 

problem where the goals of stochastic objectives and rate of return of securities are 

random parameters. We consider a sample of 15 stocks from the Iran stock exchange 

market. The data and observations (from March 2002 to March 2011) of the in-sample 

period are used as the training set to determine the models parameters and 

specifications. For the illustration purpose, we consider four selected objectives. These 

objectives are: 

● The first objective is return stochastic objective function. The rate of return 

(
1 1( ) /j j,t j,t j,t j,tr P P D P ) measures the profitability of the stock where the income 

can be in the form of random capital gain and dividend. Here 
j,tP is the price of the 

stock j at time t and 
j,tD is the dividend received during the period [t – 1, t]. 

jr  j =1, …, 

15 are random and normally distributed with known mean μj and variance σ
2

j. This 

stochastic objective is to be maximized. 

● The second objective is Beta risk objective function. Cov( , ) / Var( )j j m mβ r r r , 

where
jr , j = 1, …, 15 is the rate of return of stock j and 

mr is the rate of market return. 

This objective indicates the reliance of stock’s return on market. Lower correlation 

with the market indicates the stock performance on its own rather than by the 

movements of the market. The aim is to choose a diversified portfolio with small β. 

● The third objective is initial cost of investment objective function. In real world, 

many people suffer because they have not enough money for secure investments. Thus 

the aim this is which they spend less money while will obtain their favorite results 

from other objectives. Pj is the price of stock j (with known formal currency) in the 

last under study day. Let N be total number of existent securities (stocks) in the 

optimum portfolio. Therefore the initial cost of investment objective function can be 

obtained without considering the value N as follows: 
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Z = N P x f P x

N N N

 

Finally optimum value of cost for selection and allocation of optimum portfolio is 

equal to Z
*

 = f3
*
N. We consider price of the last day in under study term (Pj) to 

purchase stock j. This objective is to be minimized. 

● The fourth objective is purchase ratio objective function. /j j,s TPR PN PN (for 

j = 1, …, 15) is purchase ratio of stock j when the market is open. PNj,s being the 

number of purchasers of stock j and PNT being the total number of purchases in under 

study term. The aim is to select a portfolio whose stocks are more attracting to buyers. 

This objective has to be maximized. 

The system constraints can be defined as follows: 

(a) The sum of the proportions invested in stocks is equal to 1: 15

1
1jj

x (Markowitz, 

1952). 

(b) Allocated constraints: 

● In order to diversify the selected portfolios and maximum utilization from the all 

existent capacities of investment, DM proposes to invest 25% in automotive industry 

(for stocks j = 1, 2, 3, 15), banking and leasing (for stocks j = 5, 6, 7, 8), investment 

sectors (for stocks j = 4, 13, 14) and another sectors (for stocks j = 9, 10, 11, 12). In 

fact summation of these constraints is equal to the constraint of part (a). 

●  Setting a lower and an upper bound for each stock in order to diversify the portfolio,                

0 ≤ xj ≤ 0.1, for j = 1,..., 15, where the xj is the proportion to be invested in the stock  j. 

The main portfolio selection problem can be formulated as follows: 
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The Program (7) is transformed to a CCGAP as Program (8):  
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where
4

=1
1kk  

w (wk > 0, for k = 1, …, 4). 

In Program (8), the parameters jr  (for j = 1, …, 15) and 1g are considered  random 

and normally distributed with known mean and variance. Table 1, presents the mean 

and variance values of the random parameter 1g . Also Table 2 presents the goal values 
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of deterministic objectives. The goal value of Beta objective is equal to 1 (Lee and 

Chesser, 1980). The other parameters of Program (8) are known with certainty. The 

objectives considered in this example are the rate of return, the risk β, the initial cost of 

investment and the purchase ratio which only the return objective is stochastic and 

other objectives are deterministic.  

 
 

Table 1. Goal value of stochastic objective (for k = 1) 

Random goal μ σ
2

 

1g 0.1293075 0.0003256 

 

Table 2. Goal values of deterministic objectives (for k = 2, 3, 4) 

Objectives ( fk) Deterministic goals (gk)    
f2 1 

f3 1262 

f4 0.1353624 
 

In Table 3, we present data concerning the 15 different stocks of the Iran stock 

market for the years 2002 to 2011. The six columns of the Table 3 are number, the 

stocks, the stock price in the last exchanged day, the risk β, the expected rate of return 

of each security, and the purchase ratio of each security, respectively.  

From DM’s viewpoint, different scenarios are proposed for threshold α and vector of 

preference weights w. Program (8) was applied separately for each scenario by Lingo 

software package and Table 4 shows optimal portfolio of each scenario and optimal 

values of each objective. 

 

                Table 3. Data under study 

 

j Stock Stock price in 

the last 

exchanged 

day (Pj) 

Beta risk 

(βj) 

Expected 

rate of 

return 

(μj) 

Purchase 

ratio 

(PRj) 

1 PARS AUTO 926 0.59815 0.0012654 0.1292097 

2 MEH IRAN AUTO 700 1.15065 –0.0006437 0.1301761 

3 SAIPA 926 0.17812 0.0015994 0.1214500 

4 RAY SAIPA INV 2392 2.60025 0.0027148 0.1067670 
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5 PERSIAN BANK 2337 1.05606 0.0021114 0.1140610 

6 KAR AFR BANK 1435 2.00207 0.0019685 0.1304640 

7 IRAN LEAS 2115 –1.02369 0.0027717 0.1304920 

8 IND & MIN LEAS 967 1.23007 0.0022249 0.1399780 

9 PARS ALU 948 2.14956 –0.0001838 0.1289632 

10 ALUMTAK 1385 –0.82301 0.0016264 0.1100235 

11 IRAN BEHNUSH 2373 –0.00125 0.0009780 0.1224789 

12 PARS MINOO 2477 3.67891 –0.0021901 0.1263525 

13 OIL IND INV 1180 1.67921 0.0011433 0.1324790 

14 SEPAH INV 1180 2.12003 0.0011433 0.1240011 

15 SAIPA DIESEL 920 0.89782 –0.0004956 0.1203698 

 

Table 4. Optimum values of portfolios with regard to difference scenarios 

α = 0.01 

w (0.2,0.2,0.4,0.2) (0.2,0.5,0.1,0.2) (0.25,0.25,0.25,0.25) (0.3,0.2,0.2,0.3) 

x1
*
 0.04232 0.02658 0.02795 0.02704 

x2
*
 0.1 0.1 0.1 0.1 

x3
*
 0.1 0.07151 0.08488 0.07597 

x4
*
 0.05 0.05 0.05 0.05 

x5
*
 0 0 0 0 

x6
*
 0.1 0.1 0.1 0.1 

x7
*
 0.05 0.05 0.05 0.05 

x8
*
 0.1 0.1 0.1 0.1 

x9
*
 0.1 0.1 0.1 0.1 

x10
*
 0.1 0.1 0.1 0.1 

x11
*
 0.05 0.05 0.05 0.05 

x12
*
 0 0 0 0 

x13
*
 0.1 0.1 0.1 0.1 

x14
*
 0.1 0.1 0.1 0.1 

x15
*
 0.00768 0.05191 0.03717 0.047 

f1
*
 0.0012608 0.0011734 0.00120383 0.00118354 

f2
*
 1 1 1 1 

f3
*
 1262.3 1262.1 1262.2 1262.1 

f4
*
 0.12613298 0.12596307 0.12598964 0.12597193 

α = 0.025 

w (0.2,0.2,0.4,0.2) (0.2,0.5,0.1,0.2) (0.25,0.25,0.25,0.25) (0.3,0.2,0.2,0.3) 

x1
*
 0.03973 0.025 0.02631 0.02543 

x2
*
 0.1 0.1 0.1 0.1 
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x3
*
 0.1 0.07244 0.08523 0.07671 

x4
*
 0.05 0.05 0.05 0.05 

x5
*
 0 0 0 0 

x6
*
 0.1 0.1 0.1 0.1 

x7
*
 0.05 0.05 0.05 0.05 

x8
*
 0.1 0.1 0.1 0.1 

x9
*
 0.1 0.1 0.1 0.1 

x10
*
 0.1 0.1 0.1 0.1 

x11
*
 0.05 0.05 0.05 0.05 

x12
*
 0 0 0 0 

x13
*
 0.1 0.1 0.1 0.1 

x14
*
 0.1 0.1 0.1 0.1 

x15
*
 0.01027 0.05256 0.03846 0.04786 

f1
*
 0.00125625 0.00117257 0.00120167 0.00118227 

f2
*
 1 1 1 1 

f3
*
 1262.3 1262.1 1262.2 1262.1 

f4
*
 0.12611010 0.12595007 0.12597549 0.12595854 

α = 0.05 

w (0.2,0.2,0.4,0.2) (0.2,0.5,0.1,0.2) (0.25,0.25,0.25,0.25) (0.3,0.2,0.2,0.3) 

x1
*
 0.03753 0.02311 0.02437 0.02353 

x2
*
 0.1 0.1 0.1 0.1 

x3
*
 0.1 0.07378 0.08607 0.07788 

x4
*
 0.05 0.05 0.05 0.05 

x5
*
 0 0 0 0 

x6
*
 0.1 0.1 0.1 0.1 

x7
*
 0.05 0.05 0.05 0.05 

x8
*
 0.1 0.1 0.1 0.1 

x9
*
 0.1 0.1 0.1 0.1 

x10
*
 0.1 0.1 0.1 0.1 

x11
*
 0.05 0.05 0.05 0.05 

x12
*
 0 0 0 0 

x13
*
 0.1 0.1 0.1 0.1 

x14
*
 0.1 0.1 0.1 0.1 

x15
*
 0.01247 0.05311 0.03956 0.04859 

f1
*
 0.00125237 0.00117205 0.00120001 0.00118137 

f2
*
 1 1 1 1 

f3
*
 1262.3 1262.1 1262.2 1262.1 
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f4
*
 0.12609063 0.12593482 0.12595924 0.12594296 

α = 0.1 

w (0.2,0.2,0.4,0.2) (0.2,0.5,0.1,0.2) (0.25,0.25,0.25,0.25) (0.3,0.2,0.2,0.3) 

x1
*
 0.03498 0.01978 0.02099 0.02018 

x2
*
 0.1 0.1 0.1 0.1 

x3
*
 0.1 0.07647 0.08818 0.08037 

x4
*
 0.05 0.05 0.05 0.05 

x5
*
 0 0 0 0 

x6
*
 0.1 0.1 0.1 0.1 

x7
*
 0.05 0.05 0.05 0.05 

x8
*
 0.1 0.1 0.1 0.1 

x9
*
 0.1 0.1 0.1 0.1 

x10
*
 0.1 0.1 0.1 0.1 

x11
*
 0.05 0.05 0.05 0.05 

x12
*
 0 0 0 0 

x13
*
 0.1 0.1 0.1 0.1 

x14
*
 0.1 0.1 0.1 0.1 

x15
*
 0.01502 0.05375 0.04084 0.04944 

f1
*
 0.00124787 0.00117182 0.00119847 0.00118070 

f2
*
 1 1 1 1 

f3
*
 1262.3 1262.1 1262.2 1262.1 

f4
*
 0.12606806 0.12590835 0.12593163 0.12591611 

 

The obtained results from different scenarios in Table 4 show some kind close trade-

offs between objectives. We consider that jr (for j = 1,…, 15) and 1g are normally 

distributed with known mean and variance. In Table 4 the all portfolios were obtained 

with considering uncertainty. We notice that the results in all portfolios are close to 

each other, where only the proportions invested in some stocks are changed.  

What is understood from Table 4 is that by increasing α in each vector w, f1
* 

will 

decrease. In other words increase of α can result in worst condition of access to 

expected rate of return under uncertainty. About f2
*
,
 
it should be said that investment 

risk in any level of uncertainty is equal to 1. The results indicate that changes α in each 

vector w have not influence on f3
*
, so that under uncertainty and at each level α, more 

amount from the allocated budget is needed. By increase of α in each vector w, f4
* 

will 

have a decreasing procedure. In the other words, by increase of acceptance probability 

of uncertainty, number of purchasers will decrease. It seems investment in portfolio 

under uncertainty has less attractiveness for purchasers and investors. At final, it seems 

that increase of α in each scenario w has undesired effects on problem’s objectives and 
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deterioration procedure of objectives can be seen. Of course this deterioration 

procedure of optimal values of objectives is evident and rational, because it provides a 

better and more tangible represent of reality of investment in Iran stock market under 

uncertainty for DM.  

 

5. Conclusion  

Investment in multi-objective portfolios is important from two aspects of level of use 

of DM’s ideas and considering all or some of random parameters. In the beginning of 

this paper, the GAP method was introduced as a method in priori category and 

advantages of this method compared to the GP method was presented. In the other 

section, the final shape of stochastic programming problems and their optimization by 

CCP approach were introduced, so that by combining CCP approach and GAP method, 

we proposed the CCGAP method which can optimize multi-objective stochastic 

problems. At the end of this paper, on the basis of different scenarios, the proposed 

model was applied for a real problem of multi-objective portfolio selection by four 

objectives in Iran stock exchange market. In this problem, the rate of return of 

securities and the goal value of return objective were considered as random parameters 

with normal distribution and known mean and variance. At final, the obtained results 

from optimization of stochastic problem of multi-objective portfolio selection by the 

CCGAP method indicated that by increase of threshold value in each scenario, 
objectives improvement of stochastic problem will decrease.  
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